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A B S T R A C T

Tree species diversity is vital for maintaining ecosystem functions, yet our ability to map the distribution of tree
diversity is limited due to difficulties in traditional field-based approaches. Recent developments in spaceborne
remote sensing provide unprecedented opportunities to map and monitor tree diversity more efficiently. Here we
built partial least squares regression models using the multispectral surface reflectance acquired by Sentinel-2
satellites and the inventory data from 74 subtropical forest plots to predict canopy tree diversity in a national
natural reserve in eastern China. In particular, we evaluated the underappreciated roles of the practical definition
of forest canopy and phenological variation in predicting tree diversity by testing three different definitions of
canopy trees and comparing models built using satellite imagery of different seasons. Our best models explained
42%–63% variations in observed diversities in cross-validation tests, with higher explanation power for diversity
indices that are more sensitive to abundant species. The models built using imageries from early spring and late
autumn showed consistently better fits than those built using data from other seasons, highlighting the significant
role of transitional phenology in remotely sensing plant diversity. Our results suggested that the cumulative
diameter (60%–80%) of the biggest trees is a better way to define the canopy layer than using the subjective fixed-
diameter-threshold (5–12 cm) or the cumulative basal area (90%–95%) of the biggest trees. Remarkably, these
approaches resulted in contrasting diversity maps that call attention to canopy structure in remote sensing of tree
diversity. This study demonstrates the potential of mapping and monitoring tree diversity using the Sentinal-2
data in species-rich forests.
1. Introduction

Forests are among the most important terrestrial ecosystems and their
functioning depends on tree species diversity, which is facing an un-
precedented rate of loss due partly to human activities (Newbold et al.,
2015; Giam, 2017). Monitoring the distribution and dynamics of forest
tree diversity, and understanding the drivingmechanisms are thus urgent
requirements to deal with the current biodiversity crisis. Traditional
forest diversity measurements are mostly based on field inventories,
which are logistically challenging when applied at large spatial scales or
g).
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across multiple temporal periods (Kerr and Ostrovsky, 2003). Therefore,
it is crucial to develop new methods for efficiently monitoring forest
diversity, particularly at regional to global scales (Turner, 2014).

Remote sensing (RS) has been widely used in forest ecology (Cav-
ender-Bares et al., 2020). For example, there have been tremendous
successes in using RS data to quantify canopy foliar traits (Asner et al.,
2015), to map forest canopy height (Potapov et al., 2021), to predict
above-ground biomass (Zhang et al., 2014), and even to detect the effects
of biodiversity on forest biomass (Williams et al., 2021). The traditional
approach for remote sensing of plant diversity is mainly based on the
2023
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spectral variation hypothesis (SVH), which states that the remotely
sensed spatial spectral variability is positively related with plant diversity
(Palmer et al., 2002). This approach has usually been tested or practiced
by quantifying the spatial heterogeneity of some vegetation indices
(Schmidtlein and Fassnacht, 2017; Rocchini et al., 2021). For instance,
Levin et al. (2007) found that the variability of the Normalized Difference
Vegetation Index (NDVI) explained about 40% variation of plant di-
versity. Madonsela et al. (2017b) showed that the spatial standard de-
viation of the Simple Ration Index (SRI) was positively correlated with
tree species diversity and explained 33%–47% variation of various di-
versity indices. A problem of this approach is that only a few wavelength
bands were involved in the calculation of these vegetation indices,
leaving out information from other bands that are potentially useful in
quantifying spectral diversity. Another problem of this method, when
coupled with present-state satellite data to predict plant diversity, is the
relatively coarse spatial resolution of the currently available RS data
compared to the small in-situ field plots. This hinders the prediction of
plot-level (mostly no more than 20 m) species diversity using multi-
spectral satellite RS data. An alternative approach is based on statistical
modelling. For example, Mohammadi and Shataee (2010) showed that
multiple linear regression models based on the multispectral Landsat
data could explain up to 59% variation of forest diversity in the Hyrca-
nian forests of Iran. Ma et al. (2019) showed that partial least squares
regression (PLSR) models built using Sentinel-2 reflectance data
explained 55% variation in functional diversity of European forests.
These studies were conducted in relatively species-poor temperate for-
ests, with the number of species ranging from 36 to 106 within the
studied regions. The potential of using multispectral RS data to predict
species diversity in more species-rich subtropical and tropical forests
remains to be tested.

Despite these progresses, several important methodological consid-
erations are overlooked in previous studies. First and foremost, while it is
undoubtful that the information captured by spaceborne multispectral
remote sensing is mostly about forest canopy, there is no agreement on
how to define the canopy layer of a forest in RS studies. Previous studies
mostly used arbitrary thresholds of the diameter at breast height (DBH).
For example, Ma et al. (2019) considered all trees with DBH � 7.5 cm in
mapping functional diversity in European forests, while Schneider et al.
(2017) used 20 cm as the cut-off diameter to define the canopy layer in a
temperate mixed forest in Switzerland. These thresholds were usually not
determined rigorously. Instead, they were convenient numbers employed
by different agencies in their forest inventory projects. High or low
threshold values could both result in poor model performance due to the
mismatch between remotely sensed canopy and the field data. Moreover,
there is a huge heterogeneity in forest canopy structure among different
habitats, thus it is unlikely that a single DBH threshold could fit all for-
ests. For instance, in mountain area, only a few big trees are needed to fill
up the canopy at low elevations, while more small individuals could
reach the canopy layer at high elevations.

Second, although the vegetation remote sensing community typically
uses surface reflectance retrieved from the ‘peak-greenness’ season to
study vegetation structure and ecosystem processes, it remains elusive
whether and how the variations in the phenological cycle contribute to
remote sensing of plant diversity, especially in species-rich subtropical
forests with high seasonal variation in leaf phenology. The reason of
focusing on the peak-growing season is that estimates of leaf area, foliar
chemical traits, and biomass are for mature leaves and thus are stable and
comparable across regions or over time (Chrysafis et al., 2020). This is
critical for modelling ecosystem parameters such as productivity, water
regulation, and nutrient cycling (Wu et al., 2016). However, it may not
serve well when the purpose is to predict species diversity, particularly
when using multispectral data where limited information is available to
fully characterize the subtle interspecific spectral differences in mature
leaves. On the contrary, the interspecific variation in the phenological
cycle may result in better species diversity models when
transitional-season reflectance data are used. The results are mixed
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among a few studies that have used multiple temporal RS data to model
plant diversity. Some showed that the images from transitional seasons
(e.g. spring) performed better in predicting plant diversity than that from
the growing seasons (Key et al., 2001; Madonsela et al., 2017a). Others
observed the opposite, supporting for the use of images from
peak-growing seasons to predict tree diversity (Arekhi et al., 2017;
Torresani et al., 2019). It remains to test whether integrating multiple
seasonal images to account for the phenological variation could improve
the modelling of plant diversity.

These factors ought to be addressed to guide future applications in
predicting forest tree diversity using spaceborne RS data. Here our main
purpose was to build partial least squares regression models to predict
and map the distribution of fine-grain (20 m � 20 m) canopy tree di-
versity in subtropical forests in eastern China using spaceborne spectral
reflectance data from Sentinel-2. Specifically, we aimed: 1) to explore the
role of the practical definition of forest canopy in remote sensing of tree
diversity by testing the sensitivity and robustness of the spectral models
to different definitions of the canopy layer; 2) to evaluate the role of
phenological variation in remote sensing of tree diversity by comparing
spectral models built using different combinations of the multiple sea-
sonal RS data.

2. Data and methods

2.1. Study site and forest inventory

This study was performed in the National Nature Reserve of Mt.
Tianmu (30�1803000–30�2103700 N, 119�2401100–119�2701100 E) in eastern
China. The nature reserve covers an area of about 4,300 ha peaked at
1,506 m above sea level (a.s.l.) (Fig. 1). It is located in the transitional
zone between the central- and northern-subtropical monsoon areas, with
the mean annual precipitation between 1,390 and 1,870 mm, and the
mean annual temperature varying from 8.8 to 14.5 �C (Jiang and Zhang,
1992). The natural forest types vary along the elevational gradient from
evergreen broad-leaved forest (below 950 m a.s.l.), evergreen and de-
ciduous broad-leaved mixed forest (950–1,200 m a.s.l.), to deciduous
broad-leaved forest (1,200–1,506m a.s.l.) (Da et al., 2009). The forests in
the study region were historically well protected due to Buddhism tra-
ditions and local cultural beliefs. There were two major human distur-
bance events in recent history. During World War II, Chanyuan Temple
and its adjacent forests at low elevations were burned by bombing
(Cheng et al., 1991). In the early 1980s, a small portion of the
low-elevation area was affected by forestry management, where some
economically valuable species, such as bamboo, were planted (Cheng
et al., 1991). The National Nature Reserve was established in 1986, and
there has been no further major human disturbances.

From 2017 to 2021, we established 74 permanent sampling plots in
mature forests in this region (Fig. 1). The majority of the plots (68 out of
74) were in natural or semi-natural forests. The remaining six plots were
located in planted forests to represent the small proportion of heavily
disturbed forests in the study area. Each plot has an area of 20 m � 20 m
and the coordinates of the four corners were recorded using a high-
precision Trimble GeoXH 3000 handheld GPS. All free-standing stems
in the plots with a diameter at breast height (DBH) no less than 1 cmwere
tagged, measured, and identified to species (Zhang et al., 2021). In total,
373 woody species were identified, representing most woody species in
the Reserve.

2.2. Multispectral reflectance from Sentinel-2

Seninel-2 is a wide-swath (290 km), high-resolution (10–60 m),
multispectral (13 bands) and high-revisit-frequency (no longer than 5
days) imaging mission for monitoring Earth's surface changes (Drusch
et al., 2012). It consists of two sister satellites (Sentinel-2A and
Sentinel-2B) in the same orbit, launched by the European Space Agency
(ESA) on 23 June 2015 and 7 March 2017, respectively. Sentinel-2



Fig. 1. Locations of field plots in the National Nature Reserve of Mt. Tianmu. Red points represent field plots (20 m � 20 m), yellow four-angle star represents
Chanyuan temple, and polygon roughly outlines the boundary of the “core area” of the Reserve. (For interpretation of the references to color in this figure legend, the
reader is referred to the Web version of this article.)
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provides readily available high-quality multispectral surface reflectance
data covering the majority land surface of the globe. All ten bands rep-
resenting surface reflectance (B02, B03, B04, B05, B06, B07, B08, B8A,
B11, B12) pre-processed to Level-2A (bottom-of-atmosphere reflectance
in cartographic geometry) were used in this study (Drusch et al., 2012).
These bands are mostly at 20-m resolution. The four bands with a finer
resolution (10 m) were resampled to 20 m to ease model-building.

By setting the percent cloud cover to < 10% in the study region, we
downloaded 46 images from January 1st, 2019 to September 30th, 2022
in Google Earth Engine (Gorelick et al., 2017). For each image, the pixels
classified as non-vegetation (e.g., cloud) by the built-in scene classifica-
tion (Table S2) were masked out. The image would not be used if more
than 10% pixels overlapping our study plots were masked. Otherwise, the
image was kept and the masked pixels were imputed using the average of
similar images (e.g., from the same season). This procedure resulted in 35
images. We also visually inspected the other 11 images that were
excluded and found that some pixels were misclassified by the built-in
classifier. This procedure re-included six images and in total 41 images
were used in our study (Table S1). To ensure a proper spatial match
between Sentinel-2 data and field measurements, we tried five co-
ordinates (four corners plus the center of each plot) to extract sentinel-2
data to build our models. The results showed that the models built using
RS data extracted from the northwest corners performed best. Therefore,
we used RS data extracted from the northwest corners in the following
analyses.
2.3. Data analyses

Three different methods were used to define canopy trees that were
used in the calculation of species diversity. First, we considered in-
dividuals with a DBH no less than an arbitrary threshold as canopy trees.
Different numbers (1–50 cm) were tested to find out the best threshold
that results in the best explanative power of our spectral model in pre-
dicting canopy diversity. Our second and third methods were based on
the cumulative proportional DBH and basal area (BA), respectively, of the
large trees. In these methods, individuals in each plot were sorted
descendingly by DBH and canopy trees were defined as those largest trees
that accumulate to an arbitrary proportion of total DBH or BA. Different
proportions (20%–100%) were tested to find out the best threshold that
gives the best explanative power of the spectral model in predicting
canopy diversity.

We used four diversity indices to quantify the canopy diversity of each
3

plot, namely the Richness, Shannon-Wiener index (Shannon, 1948),
Gini-Simpson index (Simpson, 1949), and Berger-Parker index (Berger
and Parker, 1970). These indices represent a gradient of sensitivity of
diversity measures to species abundance and are special cases of a unified
diversity measurement (Hill, 1973). Richness highlights the role of rare
species while the Berger-Parker index expresses the importance of the
most abundant species. The other two indices, Shannon-Wiener and
Gini-Simpson, fall between the two extremes, with Gini-Simpson more
sensitive to abundant species than Shannon-Wiener. We modelled these
diversity indices by partial least squares regression (PLSR) using
plot-level spectral reflectance of single or stacked Sentinel-2 images
described above (Geladi and Kowalski, 1986). We followed Williams
et al. (2021) to assess the effect of the number of PLSR components on
model performance. The preliminary results suggested that the optimal
number is 1–4 (mode: 3) components across different scenarios. To
facilitate comparison among different models, we finally decided to use
three components for all PLSR models. The model goodness-of-fit was
evaluated by the coefficient of determination (R2

cv) calculated from
leave-one-out cross validation. To quantify the relative importance of
each band in predicting species diversity, we used the varImp function
from the R package caret (Kuhn, 2008). All statistical analyses were
conducted in R (R Core Team, 2020).

3. Results

Our PLSR models based on Sentinel-2 reflectance performed well in
predicting species diversity, although the predictive power varied among
different diversity indices and was dependent on methodological con-
siderations. The different approaches of defining the canopy layer
showed a significant effect on our model performance (Fig. 2). When the
canopy was defined using arbitrary DBH cutoffs, the best model-data fit
was obtained when the cutoff threshold ranges from 5 to 12 cm (peaked
at ~10 cm). When the canopy was defined using cumulative DBH or BA
of the biggest trees, the model-data fit was the best when the cumulative
threshold ranges from 60% to 80% and from 90% to 95% for the cu-
mulative DBH and BA, respectively. Among these three methods, the
model-data fit was consistently better for the cumulative DBH approach.
Richness was most sensitive to the definition of the canopy layer, with
the best R2 dropped from around 0.4 for the cumulative DBH approach to
less than 0.3 for the other two methods (Fig. 2). Meanwhile, the cumu-
lative DBH method was relatively robust to varying threshold while the
best thresholds for the other two methods were very narrow (Fig. 2).



Fig. 2. The effect of different definitions of forest
canopy on model performance in predicting canopy
diversity. Model performance was quantified using
the cross-validation-based coefficient of determina-
tion (R2). The different definitions of the canopy layer
include: (a) trees with diameter at breast height
(DBH) greater than a certain threshold, (b) the biggest
trees with the cumulative DBH greater than a certain
threshold, and (c) the biggest trees with the cumula-
tive basal area (BA) greater than a certain threshold.
Different color represents different diversity indices.
(For interpretation of the references to color in this
figure legend, the reader is referred to the Web
version of this article.)
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The Berger-Parker and Gini-Simpson indices were the best predicted
diversity measures (the maximum R2

cv ¼ 0.63 and 0.62 respectively),
followed by the Shannon-Wiener (R2

cv ¼ 0.53) and Richness (R2
cv ¼

0.42) (Fig. 3). The predictive power of our single-image PLSRmodels was
season-dependent. For all the diversity indices, our model performed best
when using RS data from early spring (March to April) or autumn
(September to November), but did not perform well in winter and sum-
mer (Fig. 3). To assess whether multitemporal RS data could improve
model prediction, we built additional PLSR models based on stacked
images of a whole year. The model based on multitemporal data showed
Fig. 3. The temporal variation of the cross-validation-based coefficient of determinat
Simpson index (c), and Berger-Parker index (d). Shown are results from the situation
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no better fit than that achieved by the best single-image models (Fig. 3
and S1). For simplicity's sake, we used the best-performance models built
using imagery acquired on April 08, 2022 to derive the following results.
These results are qualitatively consistent no matter which imagery was
used as long as they were from early spring or autumn.

The relative importance of spectral bands in our best-performance
model in predicting canopy tree diversity varied among different wave-
length. The NIR spectral regions (B08, B8A) were most important in
predicting tree diversity followed by the red-edge (B05, B06, B07) and
SWIR (B11, B12) regions, and the visible region (B02, B03, B04)
ion (R2
cv) for the PLSR models for Richness (a), Shannon-Wiener index (b), Gini-

where canopy diversities were calculated for trees with Cumulative DBH � 70%.
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contributed the least in our PLSR models (Fig. 4). This result is consistent
for different diversity measures, among different methodological set-
tings, and does not depend on the imagery used in model building.

Based on our best selected PLSR models, we produced predicted di-
versity maps in our study region and explored the much-demanded
altitudinal diversity gradient (Fig. 5 and S2). While for most diversity
indices we found a consistent unimodal altitudinal gradient, it is inter-
esting to note the contrasting altitudinal richness gradients predicted for
canopies defined using different methods. The richness gradient derived
from the DBH cutoff showed a unimodal pattern. However, the richness
gradient derived from the cumulative DBH and BA approaches showed a
monotonically increasing pattern with elevation (Fig. 5 and S2).

4. Discussion

Our study demonstrated the good performance of using Sentinel-2
multispectral reflectance to predict fine-grain canopy tree diversity in
species-rich subtropical forests. At a spatial resolution of 20 m, our PLSR
models showed better predictive power than similar studies published in
recent years (Madonsela et al., 2017b; Chrysafis et al., 2020; Mallinis
et al., 2020). The best goodness-of-fit as measured by
cross-validation-based coefficient of determination in these studies was
0.19, 0.44, 0.37 for species richness, Shannon-Wiener index, and
Gini-Simpson index, respectively; they were all smaller than that re-
ported in this study. This partly reflects our comprehensive consideration
of the important methodological problems, including the contribution of
phenological variation to remote sensing of plant diversity and the
sensitivity of the practical definition of forest canopy.

Among the four diversity indices explored in our study, richness is the
index that our spectral models did not provide as good prediction as for
the other indices (R2

cv ¼ 0.42 vs. R2
cv > 0.53). This is consistent with

previous studies and seems true across different forest types (Wang et al.,
2018b), different sources of spectral data (Dogan and Dogan, 2006), and
different statistical modelling approaches (Madonsela et al., 2017b). The
relatively poor performance of spectral models in predicting species
richness may be rooted in the nature that species richness does not
include any information of species abundances and is most sensitive to
rare species (Hill, 1973). At spatial resolutions of the Sentinel-2 data
(10–20 m) or alike, the spectral information provided by the few in-
dividuals of rare species can be easily concealed by that from the abun-
dant individuals of common species. The higher-order diversity
measures, such as Gini-Simpson and Berger-Parker, are weighted by
Fig. 4. Statistical quantification of the relative importance of the ten spectral bands in
are generated based on the best performance model (Cumulative DBH ¼ 70%) usin
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species abundance and incorporate information about the number of
species and their evenness, both of which were known to contribute to
remotely sensible spectral signals (Wang et al., 2018a). As such, these
diversity indices are better predicted from remote sensing data (Figs. 2
and 3). Better performing spectral models for plant richness may be
achieved by using hyperspectral remote sensing at finer spatial resolu-
tions (Schweiger and Laliberte, 2022).

4.1. The role of phenological variation in remote sensing of plant diversity

Based on the variable importance analysis, we found that red-edge,
NIR and SWIR are the most important spectral regions in predicting
forest tree diversity (Fig. 4). This aligns well with previous studies in
predicting biodiversity and plant traits (Asner et al., 2015; Ma et al.,
2019). Especially, the reflectance of infrared regions represents aggre-
gated signals reflecting leaf biochemical and morphological traits (Ustin
and Gamon, 2010). Some studies found that NIR and Red-edge reflec-
tance from multispectral satellites, such as Sentinel-2 and MODIS, shows
a good predictive power for biochemical traits including canopy nitrogen
concentration and carbon content (Ollinger et al., 2008; Clevers and
Gitelson, 2013). Others showed that many morphological traits, such as
specific leaf area and leaf dry matter content, could also be predicted by
spectral information derived from Landsat and Sentinel-2 (Lymburner
et al., 2000; Ali et al., 2017; Ma et al., 2019). Therefore, the spectral
properties as a reflection of the community-level variation in plant
chemical, morphological, and structural traits determined by species
composition are a key reason why spaceborne reflectance information
could be used to predict plant diversity (Townsend et al., 2003; Kokaly
et al., 2009; Ma et al., 2019).

Temporal variation in plant traits can alter the relationship between
remotely sensed images and biodiversity, which in turn affects the pre-
dictive power of the spectral models (Wang et al., 2022). Our results
support that images taken from transitional seasons (i.e. early spring and
late autumn) are better than that from growing seasons in predicting
plant diversity (Fig. 3). The study region is characterized by evergreen
and deciduous broad-leaved mixed forests. Most species flower, sprout,
and grow new leaves in early spring from March through April (Ding,
2010). In late autumn, as the trees shut down photosynthesis and become
dormant, many valuable foliar chemicals in deciduous species are
reclaimed before the leaves fall. These phenological variation could
result in spectral signatures that differ in diverse vs. species-poor plots
and thus contribute to remote sensing of plant diversity. For instance, in
predicting tree diversity as measured by different indices. The presented results
g the imagery acquired on April 08, 2022.



Y. Liu et al. Forest Ecosystems 10 (2023) 100122
these transitional seasons, the reflectance of a mixture of evergreen and
deciduous trees must be different from that of a monoculture of either
evergreen or deciduous trees. In contrast, in the peak-growing season
(summer), the subtle interspecific differences in foliar chemicals of
mature leaves may not be sufficient to generate plot-level signatures that
can predict plant diversity from only a dozen spectral bands. We note that
our results are not in contrast to some studies that conclude differently.
For instance, Chrysafis et al. (2020) showed that growing-season images
provided better predictions of tree diversity in forests dominated by
conifer species. This could be explained by the lack of phenological
variation in coniferous forests.

Surprisingly, our multitemporal model did not show better prediction
than the best single-image-based model (Fig. 3 and S1). This may result
from the weakness of effective signal due to the noise information (Key
et al., 2001) as well as the limited number of plots used in our study.
Therefore, we suggest that the appropriate selection of RS images
(seasoning) is a good way to improve the ability of monitoring plant
diversity from space, while we also petition for further investigation into
the contribution of multitemporal data in remote sensing of plant di-
versity. We acknowledge that our results are based on simple regression
modelling that used the multispectral data. More sophisticated methods,
such as deep learning, and hyperspectral remote sensing data could
provide better results and new insights in the future (Reichstein et al.,
2019).

4.2. The effect of the practical definition of forest canopy on remotely
sensing canopy diversity

To our knowledge, this study is the first attempt that comprehensively
evaluated the effect of the practical definition of forest canopy in remote
sensing of plant diversity (see section 2.3). It is well-known that the size
of trees is dependent on the environment, so that a same arbitrary cutoff
applied across different habitats could cause mismatch between remotely
sensed canopy and the field data. Our results clearly demonstrated this
problem, with spectral models built for the canopy defined using cu-
mulative DBH of big trees fit better to empirical data than that using
cumulative BA or DBH cutoffs (Fig. 2). While this is consistently true for
all four diversity indices explored in this study, it is particularly signifi-
cant for species richness, where the best coefficient of determination
(R2

cv) dropped from 0.4 to ~0.3 when the canopy definition was changed
from using cumulative DBH to using DBH cutoffs. More importantly,
when the spectral models based on these different practical canopy
definitions were used to map tree diversity in the study region, con-
trasting biodiversity patterns were revealed for species richness (see
detailed discussion in the next section). These results highlight the fact
that only reflectance of the canopy layer can be collected by typical op-
tical remote sensing and canopy structure is a critical factor that should
be considered in future remote sensing of plant diversity.

Our results provide some guidelines for future studies. For instance,
we showed that the remotely sensed diversity captured information for
the top 60%–80% cumulative DBH of a forest. And an arbitrary DBH
cutoff is a bad choice in building spectral models to predict canopy
species richness. Given the significant role of canopy structure and the
limitation of passive optical remote sensing, integrating either or both
LiDAR data and habitat variables into the spectral models may be a
rewarding approach in predicting forest diversity.

4.3. Elevational diversity gradients predicted by multispectral remote
sensing

Elevational diversity gradient is a major research topic in ecology and
biogeography. The conventional field-based approach was inevitably
limited and usually biased by the accessibility of field sampling sites.
Remote sensing of biodiversity is a promising method in filling this
biodiversity data gaps. Here we mapped the canopy tree diversity in the
National Natural Reserve of Mt. Tianmu using multispectral reflectance
6

provided by Sentinel-2 and the best spectral models developed above.
Below we discuss the diversity patterns revealed in this study and the
implications of our findings.

For all diversity indices but species richness we found a consistent
unimodal altitudinal diversity gradient (Fig. 5 and S2), adding support to
the numerous previous studies that showed a similar pattern (Rahbek,
2004). While the lower diversity near mountain peak could be explained
by harsh environment (e.g., limitation of energy and climate seasonality
– although our study region located in subtropical area, winter snow is
normal in high elevations), the extremely low diversity at low elevations
may be related to human disturbances. We note the area with lowest
diversity is surrounding the Chanyuan Temple. This area was historically
heavily disturbed by the war in 1940s and by deforestation before early
1980s (Cheng et al., 1991). The nuanced patterns of our diversity maps
seem to be related with the microtopography with valleys having slightly
higher diversity than adjacent slopes (Fig. S4).

The altitudinal richness gradient was dependent on the methodo-
logical considerations – specifically the practical definition of forest
canopy. The richness gradient derived from the DBH cutoff also showed a
unimodal pattern. However, the richness gradient derived from the cu-
mulative DBH and BA approaches showed a monotonically increasing
pattern with elevation (Fig. 5 and S2). These results clearly showed the
implications and consequences of overlooking the effect of canopy defi-
nition in remote sensing of forest diversity. Both patterns make sense.
Although with less precision, the unimodal altitudinal richness predicted
for trees with DBH greater than a certain number (10 cm in this case) can
be explained by similar reasons as for the other diversity measures above.
The increasing with elevation for richness of “big” trees accumulating the
top 70% DBH is more precise because the model used to generate this
pattern showed a better goodness-of-fit as measured by the coefficient of
determination (Fig. 2). The reason why richness did not decrease at high
elevations is simply a reflection of the lack of big trees at high elevations,
where more small trees can reach the canopy and contribute to the top
70% DBH (Fig. S3). Without knowing the canopy structure and habitat
information a prior, remotely sensed diversity patterns (such as Fig. 5E)
could be misleading and hard to interpret.

4.4. Concluding remarks

We briefly remark on a fewmore general issues before concluding our
study. One problem that was often discussed in the literature but not
addressed in our study is the scale-dependency of the correlation be-
tween spectral reflectance and plant diversity (Wang and Gamon, 2019).
In theory, the correlation for tree diversity is strongest when the spatial
resolution of the spectral data matches the size of a typical tree crown
because in this case the inter-pixel spectral variation could be used to
predict tree diversity (Woodcock and Strahler, 1987). For a similar
reason, the correlation may also be improved if the grain size (i.e., plot
size) is much larger than the pixel size even if the pixel is larger than a
tree crown (Liu et al., 2023). In our case the spatial resolution of the
Sentinel-2 data (20 m) is much larger than a typical tree crown and the
small grain size of our plots (20 m) did not allow us to incorporate spatial
spectral variation into our models. As such, we only used mean reflec-
tance in our models and the coefficients of determination reported in this
study underestimate the full potential of using spectral information to
predict tree diversity. For better prediction of plant diversity from
spectral information, we suggest using both mean reflectance and spatial
spectral variation whenever possible (i.e., when the grain size is larger
than the pixel. Ma et al., 2019; Schweiger and Laliberte, 2022; Liu et al.,
2023). Another problem worth noting is the effect of the geolocation
accuracy of remote sensing data on the prediction of plant diversity. The
Sentinel-2 data used in our study have a nominal absolute geolocation
accuracy of around 12 m at 95% confidence, while the multitemporal
spatial co-registration accuracy is better than 5 m for data acquired over
the same geographical area (Enache, 2022). The observation that the
spectral models performed better (average ΔR2 ¼ 0.13) when using data



Fig. 5. High-resolution (20 m) maps of predicted canopy tree diversity for the National Natural Reserve of Mt. Tianmu. (a–d) Predictions for the canopy layer that was
defined using the DBH cutoff approach (with the cutoff set to 10 cm). (e–h) Predictions for the canopy layer that was defined using the cumulative DBH approach (with
the threshold set to 70%). (i–l) Predictions for the canopy layer that was defined using the cumulative BA approach (with the threshold set to 93%).
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extracted from the northwest corners of each plot than using data
extracted from other coordinates suggests that there does exist some pixel
shift in our study area. This highlights that careful consideration of this
effect could improve the predictive power of spectral models in pre-
dicting plant diversity (Pau et al., 2022).

In conclusion, we showed that the best multispectral images for
predicting tree diversity in subtropical forest are those from transitional
seasons (e.g. spring, fall), and the multi-temporal spectral model provides
limited improvement in predicting tree diversity. Our results also high-
lighted the critical role of the practical definition of forest canopy in
remote sensing of tree diversity and suggested the cumulative DBH
7

(60%–80%) as the best way to define the canopy layer. The high-
resolution (20 m) maps of canopy species diversity produced in this
study not only showed the applicability of multispectral remote sensing
in addressing basic ecological questions like the elevational diversity
gradient, they also provided important information for guiding conser-
vation and management in the studied national nature reserve. Remote
sensing of biodiversity is a quickly developing field. The newly deployed
and upcoming spaceborne hyperspectral missions such as German
EnMAP and NASA's SBG will provide more detailed spectral information
that help to improve our ability to predict biodiversity from space
(Guanter et al., 2015; Lee et al., 2015).
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